Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Malinovskii, Yu. A., Pobedimskaja, E. A. \& Belov, N. V. (1976). Sov. Phys. Crystallogr. 21, 691-692.

Morimoto, M., Toкоnami, M., Koto, K. \& Nakajma, S. (1972). Am. Mineral. 57, 62-75.
Schartau, W. \& Hoppe, R. (1973). Naturwissenschaften, 60, 105.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Smolin, Yu. I. (1970). Sov. Phys. Crystallogr. 15, 36-39.
Smolin, Yu. I., Shepelev, Yu. F. \& Butikova, I. K. (1971). Sov. Phys. Crystallogr. 16, 790-795.
Smolin, Yu. I., Shepelev, Yu. F. \& Upatova, T. V. (1970). Sov. Phys. Dokl. 14, 630-632.
Touboul, M., Feutelais, Y. \& Hebrard, M.-A. (1976). C. R. Acad. Sci. Ser. C, 283, 347-349.
Vavilin, V. I., Gladikh, E. A., Soldatov, E. A., Kuz'min, E. A., Ilyukhin, V. V. \& Belov, N. V. (1974). Sov. Phys. Dokl. 18, 761-762.
Vetter, G., Queyroux, F., Labbe, Ph. \& Goreaud, M. (1982). J. Solid State Chem. 45. 293-302.
Völlenkle, H. (1980). Z. Kristallogr. 153, 131-139.

Di- μ-iodo-bis[tetracarbonylmanganese(I)]

By Julian A. Davies, Moniem El-Ghanam and A. Alan Pinkerton
Department of Chemistry, University of Toledo, Toledo, OH 43606, USA

(Received 20 September 1990; accepted 2 January 1991)

Abstract

Mn}_{2} \mathrm{I}_{2}(\mathrm{CO})_{8}\right], \quad M_{r}=587 \cdot 77\), monoclinic, $P 2_{1} / c, a=9.759$ (1), $b=12.252$ (2), $c=13.017$ (2) \AA, $\beta=108 \cdot 65(1)^{\circ}, \quad V=1474 \cdot 8(1 \cdot 7) \AA^{3}, \quad Z=4, \quad D_{x}=$ $2.65 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71073 \AA, \mu=58.2 \mathrm{~cm}^{-1}$, $F(000)=1072, \quad T=294(1) \mathrm{K}, \quad R=0.032$ for 1877 unique reflections with $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$ of 3212 total data. The I atoms form the dimer. There is pseudo octahedral geometry around the Mn atoms. Ranges of bond lengths and angles: I-Mn 2.691 (1)2.710 (1), $\quad \mathrm{Mn}-\mathrm{C}_{\text {eq }} 1.797$ (9)-1.815 (8), $\quad \mathrm{Mn}-\mathrm{C}_{\mathrm{ax}}$ 1.865 (9)-1.882 (8), $\quad \mathrm{Mn} \cdots \mathrm{Mn} 3.986$ (1), $\quad \mathrm{C}_{\text {eq }}-\mathrm{O}$ $1 \cdot 122(9)-1 \cdot 16(1), \quad \mathrm{C}_{\mathrm{ax}}-\mathrm{O} \quad 1 \cdot 108(9)-1 \cdot 127(9) \AA$, $\mathrm{Mn}-\mathrm{C}-\mathrm{O} 177 \cdot 6$ (6)-180 (1), I-Mn-C $\mathrm{C}_{\mathrm{ax}} 88.0$ (2)89.7 (2), $\mathrm{I}-\mathrm{Mn}-\mathrm{C}_{\text {eq }} 91.2$ (3)-92.7 (2), $\mathrm{Mn}-\mathrm{I}-\mathrm{Mn}$ $95 \cdot 09$ (3)-95.10 (3), I-Mn-I 84.61 (3)-85.16 (3) ${ }^{\circ}$.

Introduction. Since the first synthesis of manganese pentacarbonyl iodide in 1954 (Brimm, Lynch \& Sesny, 1954), other carbonyl halides of manganese $(\mathrm{Cl}, \mathrm{Br})$ have been prepared and their utility in organometallic synthesis has become apparent (Wimmer \& Snow, 1978). These compounds undergo thermal dissociation of coordinated carbon monoxide and dimerization to produce bis[halotetracarbonylmanganese(I)] (Brimm, Lynch \& Sesny, 1954), according to the following stoichiometry

$$
\begin{aligned}
2\left[\mathrm{Mn} X(\mathrm{CO})_{5}\right] & \rightarrow\left[\mathrm{Mn}_{2} X_{2}(\mathrm{CO})_{8}\right]+2 \mathrm{CO} \\
X & =\mathrm{Cl}, \mathrm{Br}, \mathrm{I}
\end{aligned}
$$

It is known that the thermal decomposition of manganese pentacarbonyl iodide to the correspond-

0108-2701/91/071356-03803.00
ing bis[iodotetracarbonylmanganese(I)] is easier (Abel \& Wilkinson, 1959) than the corresponding dimerization of the rhenium analog, whose X-ray structure has been reported previously (Darst, Lenhert, Lukehart \& Warfield, 1980). Although both $\left[\mathrm{Mn}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{8}\right]$ (Clegg \& Morton, 1978) and $\left[\mathrm{Mn}_{2} \mathrm{Br}_{2}(\mathrm{CO})_{8}\right]$ (Dahl \& Wei, 1963) have been characterized crystallographically $\left[\mathrm{Mn}_{2} \mathrm{I}_{2}(\mathrm{CO})_{8}\right.$] has not. In order to complete the series of manganese dimers and to allow comparisons with $\left[\operatorname{Re}_{2} \mathrm{I}_{2}(\mathrm{CO})_{8}\right]$, we describe here the structural characterization of $\left[\mathrm{Mn}_{2} \mathrm{I}_{2}(\mathrm{CO})_{8}\right]$.

Experimental. The complex $\left[\mathrm{Mn}_{2} \mathrm{I}_{2}(\mathrm{CO})_{8}\right]$ was prepared by the reaction of $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$with diiodoacetylene as reported previously (Davies, El-Ghanam, Pinkerton \& Smith, 1990). This compound was isolated with other products of the reaction and then separated. $\left[\mathrm{Mn}_{2} \mathrm{I}_{2}(\mathrm{CO})_{8}\right]$ was first identified by infrared and mass spectroscopy. IR (KBr disk): $\nu(\mathrm{CO})$ $1844(v w), 1868(w), 1890(w), 1951(m), 1960(w)$, $1978(s), \quad 2004(m), \quad 2026(m), \quad 2036(m)$, 2087 (vs) cm^{-1}; MS (70 eV ; EI): $M^{+}(558), M^{+}-$ 3CO (504), $M^{+}-4 \mathrm{CO}$ (476), M^{+}-5CO (448), $M^{+}-6 \mathrm{CO}(420), M^{+}-7 \mathrm{CO}$ (392), $\mathrm{Mn}_{2} \mathrm{I}_{2}^{+}$(364), $\mathrm{Mn}_{2} \mathrm{I}^{+}$(237), MnI^{+}(182), I^{+}(127), Mn^{+}(55). $\left[\mathrm{Mn}_{2} \mathrm{I}_{2}(\mathrm{CO})_{8}\right]$ was crystallized from hexane to give a brown crystalline material found to be suitable for X-ray analysis. Crystal $0.34 \times 0.14 \times 0.08 \mathrm{~mm}$; Enraf-Nonius CAD-4 computer-controlled κ-axis diffractometer, graphite monochromator; cell dimensions from setting angles of 25 reflections, $10<\theta<$
$15^{\circ} ; \omega-2 \theta$ scan; max. $2 \theta=52^{\circ} ; h 0$ to $12, k 0$ to $15, l$ -16 to 15 ; empirical absorption (from $0.61-0.99$ on I); three standard reflections, decay 7.7%, intensities adjusted accordingly; 3212 data, 3033 unique, $R_{\text {int }}=$ $2 \cdot 2 \%$, structure solved by direct and Fourier methods; refined by full-matrix least squares minimizing $\quad \sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}, \quad w=4 F_{o}^{2} / \sigma^{2}\left(F_{o}\right)^{2}, \quad 182$ parameters; final $R=0.032, w R=0.039$ for 1877 reflections with $F_{0}{ }^{2}>3 \sigma F_{0}^{2}$; max. shift to e.s.d. $=$ $0 \cdot 19$; max. and min. of difference Fourier synthesis 0.70 (16) and $-0.78(16)$ e \AA^{-3}, e.s.d. of observations of unit weight $=1 \cdot 12$, atomic scattering factors for neutral $\mathrm{Mn}, \mathrm{I}, \mathrm{C}$ and O atoms, and values of f^{\prime} and $f^{\prime \prime}$ for all atoms from International Tables for X-ray Crystallography (1974, Vol. IV, Tables 2.2 and 2.3.1); computer programs SDP/VAX (Frenz, 1978). The figure was prepared using ORTEP (Johnson, 1971).

Discussion. The compound (Fig. 1) was prepared by the reaction of $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$and $\mathrm{IC} \equiv \mathrm{CI}$. The reaction proceeds by formal I^{+}abstraction to give [$\left.\mathrm{Mn}(\mathrm{CO})_{s} \mathrm{I}\right]$ which undergoes dimerization to $\left[\mathrm{Mn}_{2} \mathrm{I}_{2}(\mathrm{CO})_{8}\right]$, a major product of this reaction. Structure refinement was completed in order to make comparisons with $\left[\mathrm{Mn}_{2} \mathrm{Br}_{2}(\mathrm{CO})_{8}\right.$] (Dahl \& Wei, 1963), $\left[\mathrm{Mn}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{8}\right]$ (Clegg \& Morton, 1978) and $\left[\operatorname{Re}_{2} \mathrm{I}_{2}(\mathrm{CO})_{8}\right]$ (Darst, Lenhert, Lukehart \& Warfield, 1980). Final atomic coordinates are listed in Table 1 and derived bond lengths and angles in Table 2.*

The coordination geometry around the Mn atoms in $\left[\mathrm{Mn}_{2} \mathrm{I}_{2}(\mathrm{CO})_{8}\right]$ is formally octahedral with the two iodide ligands bridging the manganese centers. Inspection of Table 3 shows that the $M-X$ distances in $\left[M_{2} X_{2}(\mathrm{CO})_{8}\right]$ follow the expected trend, i.e. where $M=\mathrm{Mn}, M-X$ increases in the order $X=\mathrm{Cl}<\mathrm{Br}$ $<\mathrm{I}$ and where $X=\mathrm{I}, M-X$ increases in the order M

* Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53879 (13 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

Fig. 1. ORTEP (Johnson, 1971) drawing showing the atomnumbering scheme and 50% probability ellipsoids.

Table 1. Positional and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

	x	y	z	$B\left(\AA^{2}\right)$
I1	$-0.11491(5)$	$0.01455(4)$	$0.34614(4)$	$3.05(1)$
I2	$-0.11238(5)$	$0.25218(4)$	$0.17825(4)$	$3.09(1)$
Mn1	$0.1029(1)$	$0.13117(9)$	$0.31261(8)$	$2.44(2)$
Mn2	$-0.3281(1)$	$0.13217(8)$	$0.20810(8)$	$2.49(2)$
O1	$0.1052(7)$	$0.2787(5)$	$0.4976(5)$	$5.4(2)$
O2	$0.3272(6)$	$-0.0082(4)$	$0.4593(5)$	$4.4(1)$
O3	$0.3312(6)$	$0.2636(5)$	$0.2720(5)$	$5.2(2)$
O4	$0.0884(7)$	$-0.0109(5)$	$0.1226(5)$	$5.4(2)$
O5	$-0.3254(7)$	$0.2800(5)$	$0.3914(5)$	$5.6(2)$
O6	$-0.5524(6)$	$-0.0061(5)$	$0.2512(6)$	$5.5(2)$
O7	$-0.5492(7)$	$0.2672(5)$	$0.0524(5)$	$5.5(2)$
O8	$-0.3136(7)$	$-0.0167(5)$	$0.0301(5)$	$5.7(2)$
C1	$0.1012(7)$	$0.2230(6)$	$0.4279(6)$	$2.9(2)$
C2	$0.2378(8)$	$0.0449(6)$	$0.4023(6)$	$3.2(2)$
C3	$0.2425(8)$	$0.2140(6)$	$0.2867(6)$	$3.2(2)$
C4	$0.0941(8)$	$0.0423(6)$	$0.1943(6)$	$3.3(2)$
C5	$-0.3237(8)$	$0.2253(6)$	$0.3241(6)$	$3.5(2)$
C6	$-0.4641(8)$	$0.0468(6)$	$0.2327(7)$	$3.8(2)$
C7	$-0.4621(8)$	$0.2156(6)$	$0.1133(6)$	$3.6(2)$
C8	$-0.3174(8)$	$0.0395(7)$	$0.0972(6)$	$3.5(2)$

Anisotropically refined atoms are given in the form of the equivalent isotropic displacement parameter defined as: $B_{\text {eq }}=$ $8 \pi^{2 / 3} \times$ trace of the orthogonalized U tensor.

Table 2. Distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

II	Mnl	$2 \cdot 710$ (1)		Mn2	C7	1.802 (8)	
II	Mn 2	2.691 (1)		Mn2	C8	1.866 (9)	
12	Mn 1	2.706 (1)		O 1	Cl	$1 \cdot 127$ (9)	
12	Mn 2	2.696 (1)		O 2	C2	$1 \cdot 150$ (9)	
MnI	Cl	1.880 (8)		O3	C3	$1 \cdot 122$ (9)	
Mnl	C2	1.797 (8)		O4	C4	$1 \cdot 126$ (9)	
MnI	C3	1.815 (8)		O5	C5	$1 \cdot 108$ (9)	
Mnl	C4	1.865 (9)		O6	C6	$1 \cdot 16$ (1)	
Mn 2	C5	1.882 (8)		O7	C7	$1 \cdot 149$ (9)	
Mn2	C6	1.797 (9)		O8	C8	$1 \cdot 122$ (9)	
Mnl	I1	Mn2	$95 \cdot 10$ (3)	II	Mn2	C7	$176 \cdot 3$ (3)
Mn 1	I2	Mn2	95.09 (3)	II	Mn2	C8	$88 \cdot 2$ (2)
II	Mnl	I2	84.61 (3)	I2	Mn2	C5	$88 \cdot 1$ (2)
II	Mnl	C1	88.8 (2)	12	Mn 2	C6	$176 \cdot 7$ (3)
I1	Mnl	C2	$92 \cdot 0$ (2)	12	Mn 2	C7	91.2 (3)
I 1	Mnl	C3	$177 \cdot 3$ (2)	12	Mn2	C8	88.9 (2)
I 1	Mnl	C4	$89 \cdot 7$ (2)	C5	Mn2	C6	$92 \cdot 2$ (4)
I2	Mnl	Cl	$89 \cdot 1$ (2)	C5	Mn2	C7	$91 \cdot 8$ (3)
I2	Mnl	C2	176.5 (2)	C5	Mn2	C8	175.7 (3)
I2	Mnl	C3	$92 \cdot 7$ (2)	C6	Mn2	C7	$92 \cdot 1$ (4)
I2	Mnl	C4	$88 \cdot 0$ (2)	C6	Mn2	C8	$90 \cdot 6$ (4)
Cl	Mn 1	C2	91.4 (3)	C7	Mn 2	C8	91.3 (4)
Cl	Mnl	C3	$90 \cdot 7$ (3)	Mnl	Cl	Ol	177.6(7)
Cl	Mnl	C4	176.9 (3)	Mnl	C2	O2	177.9 (7)
C2	Mnl	C3	90.7 (3)	Mnl	C3	O3	178.4 (7)
C2	Mnl	C4	91.4 (3)	Mnl	C4	O4	180. (1)
C3	Mnl	C4	$90 \cdot 7$ (3)	Mn2	C5	O5	$177.9(7)$
11	Mn2	12	$85 \cdot 16$ (3)	Mn 2	C6	O6	177.8 (8)
11	Mn2	C5	$88 \cdot 5$ (2)	Mn2	C7	O7	178.7 (8)
11	Mn2	C6	$91 \cdot 5$ (3)	Mn 2	C8	O8	178.7 (8)

Table 3. Crystallographic data $\left(\AA,{ }^{\circ}\right)$ for some [$M_{2} X_{2}(\mathrm{CO})_{8}$] complexes

	$\left[\mathrm{Mn}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{8}\right]$	[$\mathrm{Mn}_{2} \mathrm{Br}_{2}(\mathrm{CO})_{8}$]	$\left[\mathrm{Mn}_{2} \mathrm{I}_{2}(\mathrm{CO})_{8}\right.$]	$\left[\mathrm{Re}_{2} \mathrm{I}_{2}(\mathrm{CO})_{8}\right.$]
M-C trans to halogen	1.816 (2)	1.76 (4)	1.803 (4)	1.91 (3)
$\begin{gathered} M-\mathrm{C} \text { cis to } \\ \text { halogen } \end{gathered}$	1.888 (2)	1.87 (4)	1.874 (3)	2.00 (3)
$M-X$	2.395 (1)	2.526 (5)	$2 \cdot 7007$ (5)	$2 \cdot 820$ (2)
$\boldsymbol{M} \cdots \mathrm{M}$	$3 \cdot 569$ (1)	3.743 (8)	3.986 (1)	$4 \cdot 218$ (2)
$X-M-X$	83.7 (1)	84.4 (2)	84.884 (2)	$83 \cdot 18$ (4)

$=\mathrm{Mn}<\mathrm{Re}$. The $X-M-X$ angles increase in the order $X=\mathrm{Cl}<\mathrm{Br}<\mathrm{I}$, where $M=\mathrm{Mn}$ and in the order $\mathrm{Re}<\mathrm{Mn}$ where $X=\mathrm{I}$, entirely as expected based on covalent radii. The $M-\mathrm{CO}$ distances for the carbonyl groups cis to X in $\left[M_{2} X_{2}(\mathrm{CO})_{8}\right]$ differ significantly from the $M-\mathrm{CO}$ distances trans to X; in every case the cis bonds are longer as anticipated based on the known trans-influences of the groups involved. The $\mathrm{C}-\mathrm{O}$ bond lengths shorten as $M-\mathrm{C}$ lengthens owing to less effective back bonding from manganese. Unfortunately, comparisons of $M-\mathrm{CO}$ bond distances as X is varied are hindered by the low accuracy of the bond lengths for $\left[\mathrm{Mn}_{2} \mathrm{Br}_{2}(\mathrm{CO})_{8}\right]$, whose structure was solved from photographic data. The nonbonded $\mathrm{Mn} \cdots \mathrm{Mn}$ distances in $\left[\mathrm{Mn}_{2} X_{2}(\mathrm{CO})_{8}\right]$ (all $>3.5 \AA$) are significantly longer than the $\mathrm{Mn}-\mathrm{Mn}$ distance of $2.923(3) \AA$ in $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ (Dahl \& Rundle, 1963) confirming the absence of any metal-metal interaction.

We thank the donors of the Petroleum Research Fund, administered by the American Chemical

Society, for support of this work and the College of Arts and Sciences for support of the X-ray crystallographic facilities.

References

Abel, E. W. \& Wilkinson, G. (1959). J. Chem. Soc. pp. 15011505.

Brimm, L., Lynch, M. A. \& Sesny, J. (1954). J. Am. Chem. Soc. 76, 3831-3835.
Clegg, W. \& Morton, S. (1978). Acta Cryst. B34, 1707-1 709.
Dahl, L. F. \& Rundle, R. (1963). Acta Cryst. 16, 419-427.
Dahl, L. F. \& Wei, C. H. (1963). Acta Cryst. 16, 611-617.
Darst, K. P., Lenhert, P. G., Lukehart, C. M. \& Warfield, L. T. (1980). J. Organomet. Chem. 195, 317-324.

Davies, J. A., El-Ghanam, A. M., Pinkerton, A. A. \& Smith, D. A. (1990). 199th Meet. Am. Chem. Soc., Boston, Massachusetts, USA. Abstract No. INOR. 384.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP-A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. Schenk, R. Oltof-Hazekamp, H. van Koningsveld \& G. C. BaSsi, pp. 64-71. Delft Univ. Press.

Johnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
Wimmer, F. \& Snow, R. (1978). Aust. J. Chem. 31, 267-278.

Structure of Synthetic Perryite, $(\mathbf{N i}, \mathbf{F e})_{\mathbf{8}}(\mathbf{S i}, \mathbf{P})_{\mathbf{3}}$

By A. Okada and K. Kobayashi
The Institute of Physical and Chemical Research, Wako, Saitama 351-01, Japan
T. Iто
Department of Chemical Technology, Kanagawa Institute of Technology, Atsugi, Kanagawa 243-02, Japan
and T. Sakurai
Faculty of Education, Shinshu University, Nishinagano, Nagano 380, Japan

(Received 16 July 1990; accepted 2 January 1991)

Abstract

Ni}_{0.97} \mathrm{Fe}_{0.03}\right)_{8}\left(\mathrm{Si}_{0.79} \mathrm{P}_{0.21}\right)_{3}, \quad M_{r}=550\), trigonal, $R 3 c$, hexagonal axes, $a=6.640(2), c=$ $37 \cdot 982$ (7) $\AA, V=1450 \cdot 3$ (7) $\AA^{3}, \quad Z=12[96 \mathrm{Ni}(\mathrm{Fe})$ and $36 \mathrm{Si}(\mathrm{P})$ per unit cell], $D_{x}=7.63$ (1) $\mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Mo $K \alpha)=0.71073 \AA, \mu=31.07 \mathrm{~mm}^{-1}, F(000)=$ $3194, T=295 \mathrm{~K}$, final $R=0.027, w R=0.019$ for 333 independent reflections. The structure was found to be isomorphous with that of $\mathrm{Pd}_{8} \mathrm{Sb}_{3}$, and also a stacking variant of $\mathrm{Ni}_{31} \mathrm{Si}_{12}$ and $\mathrm{Pd}_{5} \mathrm{Sb}_{2}$ structures.

Introduction. In the highly reduced stony meteorites, i.e. enstatite chondrites and enstatite achondrites, it has been known that a nickel silicide mineral called perryite occurs as thin rims around and as thin

0108-2701/91/071358-04\$03.00
lamellae within metallic nickel-iron grains. The chemical composition of perryite as determined by electron probe microanalysis is $\mathrm{Ni} 75 \cdot 5-83 \cdot 7$, Fe $1 \cdot 7-9 \cdot 4$, Si $9 \cdot 7-15 \cdot 0$ and P $2 \cdot 4-5 \cdot 2 \mathrm{wt} \%$ (Fredriksson \& Henderson, 1965; Okada, Keil \& Taylor, 1988; Reed, 1968; Wai, 1970).

Natural perryite crystals in meteorites which are usually less than $20 \mu \mathrm{~m}$ are too small to be used for single-crystal structure analysis. This is the main reason why the crystal structure and the accurate chemical formula of perryite have not been clarified. We synthesized the crystal by melting the materials, the composition obtained is almost the same as that of perryite in the Norton County enstatite achondrite © 1991 International Union of Crystallography

